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ABSTRACT

This article tackles two challenges of the empirical evaluation of
interaction techniques that rely on user memory, such as hotkeys,
here coined Recall-based interaction techniques (RBITs): (1) the
lack of guidance to design the associated study protocols, and (2)
the difficulty of comparing evaluations performed with different
protocols. To address these challenges, we propose a model-based
evaluation of RBITs. This approach relies on a computational model
of human memory to (1) predict the informativeness of a particular
protocol through the variance of the estimated parameters (Fisher
Information) (2) compare RBITs recall performance based on the
inferred parameters rather than behavioral statistics, which has
the advantage of being independent of the study protocol. We
also release a Python library implementing our approach to aid
researchers in producing more robust and meaningful comparisons
of RBITs.

CCS CONCEPTS

« Human-centered computing — HCI theory, concepts and
models; Empirical studies in HCI; Gestural input.
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1 INTRODUCTION

Recall-based interaction techniques (RBITs) are interaction tech-
niques that rely on user memory, like keyboard and gesture short-
cuts e.g., Marking-menus [26], Octopocus [5], MarkPad [16] etc.
RBITs are generally faster than interaction techniques relying on
recognition such as menus or toolbars. Moreover, they do not use
screen space, letting users focus on their primary task. Learning
RBITs takes time and effort, which limits their acceptability by
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users as well as their overall efficiency. Comparing RBITs on the
basis of their memorization is therefore important.

Such comparisons are usually conducted through a recall-based
protocol, which may combine several training and test phases. The
measure of performance that serves as the basis for comparison
is the recall percentage during test phases, which measures the
ability of the participants to recall the command-action mapping
when no assistance is provided. However, comparing RBITs with
these recall-based protocols is more difficult than it appears: (1)
the recall percentage depends not only on the RBITs themselves
but also on the training schedule, i.e., when and how many times
commands were presented to the participant [31]. This makes inter-
preting recall rates difficult across schedules. Another, more subtle
risk, which we demonstrate for the first time in this work, is that
observing a significant difference in recall percentage between two
RBITs may be attributed to differences in interaction time with the
technique, rather than actual differences in recall performance (see
the “distortion problem” in subsection 3.2). (2) constructing sched-
ules in the first place is difficult, and many experimenters create
schedules by “trial and error”, i.e., running pilot studies until recall
percentage are considered to lie in a “correct” range. Intuitively,
some schedules are better than others; schedules which systemat-
ically lead to very high (e.g., due to too many repetitions during
the training phase) or very low recall scores (e.g., due to a too short
training phase and/or with too many commands to learn) are not
useful, since they do not show differences between recall rates, but
it remains an open question in HCI research to determine which
schedules are best at estimating RBIT performances.

Our primary contribution is to suggest model-based evaluation as
amethod to evaluate RBITs that does not rely on the actual schedule.
A model-based evaluation assumes that the observed recall data can
be described by a memory model and its “true” parameters, these
parameters serving as the basis to summarize and compare RBIT
performance. The key advantage of performing the comparison
in the parameter space is that the latter are independent of the
schedules. In particular, we show in section 3 how the model-based
evaluation addresses two problems (including the aforementioned
distortion problem) that affect the traditional approach based on
comparing recall rates.

The set of true parameters describing an RBIT can not be ob-
served directly; rather, they have to be inferred from observed recall
data given a model of human memory. In this work, we use the
exponential forgetting (EF) model as model of human memory and
the method of Maximum Likelihood (ML) as inference method. We
validate our ML implementation of the EF model with extra scrutiny
on correctly estimating the uncertainty about the parameter values
to ensure meaningful comparisons in the parameter space.
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Our second contribution is to provide a method to determine the
most efficient schedule when designing an RBIT experiment i.e., the
one which minimizes the uncertainty about the “true” parameter
values of the RBITs. Our method is based on maximizing the Fisher
information provided by the schedule, which quantifies the cumu-
lative information provided by each trial of the experiment. We
namely show via several simulations that Fisher information is an
appropriate value function to rank schedules, both for comparisons
in the space of model parameters or using recall rates.

Our third contribution is pyrbit, a Python library that imple-
ments all methods presented in this work; researchers can namely
use it to assess the informativeness of an arbitrary schedule they
would have designed, and can leverage visualizations and various
utilities for simulations.

All code used for this work is publicly available, either from the
library directly, or on a GitHub repository?.

2 BACKGROUND

In this section we lay the basis of the classical and model-based
evaluations.

2.1 Paired-Associated Learning and RBITs

Paired-associate learning (PAL) is a classic memory paradigm that
is used to understand how people encode and retrieve newly formed
associations by having them remember pairs of items; in the RBIT
context a pair is a command associated with its trigger which may
be gestures [2, 17, 18], shortcuts [19, 21, 43] etc. PAL has received
significant interest from psychologists [34]; It is well known that
two major factors in PAL performance are delay (how much time
passes between stimuli presentation), and repetition (how many
times stimuli are repeated) [31]. Therefore, the schedule i.e., the
sequence that specifies which pair to present at what time, has a
major impact on the results whether measured in differences in
observed recall rates, savings [31] etc.

In a typical study, participants have to learn about 10 to 20 arbi-
trary pairs, (8 in [18, 21], 12 in [2], 16 in [18] or up to 48 in [35]).
Experiments may alternate between learning phases (or blocks),
where pairs are presented to the participant, and testing phases,
where the command is queried to the participant which should re-
spond with the right trigger. In some experiments, the correct trig-
ger is recalled to the participant at the end of each trial where they
failed to provide it, but this is not always the case. PAL experiments
may generally last several days [31], but in HCI experiments are
usually conducted over one or two days. For example, Fruchard et
al. [17] alternate learning and test blocks (one after the other) over
two days and the correct trigger is never recalled to the partici-
pant when they do not remember it; in contrast, Perrault et al. [35]
conduct a one-day experiment with an initial block used to map
items to commands, followed by four test blocks, where the correct
trigger is always recalled during the test blocks. Experimenters will
then compute the percentage of recall for each testing block, which
is the score used for comparing RBITs (potentially together with
other indicators such as mean execution time).

Not much guidance exists to construct these schedules, and as
a result the variability in protocols is large. From our experience,

!https://github.com/jgori- ouistiti/chi24-rbit
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many experiments on RBITs have been designed by copying ex-
isting studies and adjusting them after a pilot study, which may
include several trials and errors. A model-based evaluation solves
these issues, since it levels out the effect of the schedule.

2.2 The Exponential Forgetting (EF) model

The exponential forgetting (EF) model has been described and
used before in HCI [33] and follows from Ebbinghaus’ forgetting
curve [31]. According to this model, the probability p for a subject
to correctly recall a command is given by

p=exp(-a(1-p*At), acR* pel01], (1)

where k is the number of times the command was previously seen by
the subject (repetition number) and A; is the time that has elapsed
since the last time that command was seen by the subject (delay).
a and f are two “memory” parameters; « (positive) is the initial
forgetting rate: the lower «, the slower the forgetting and the better
the recall. This rate gets reduced by (1 — ) (between 0 and 1) with
each repetition which further slows the rate of forgetting, and thus
the higher the f, the better the recall. While f is unitless, the unit
for a depends on the time basis. In this work, we use standard units
ie, A; is expressed in seconds and « is expressed in s~ 1.

There exist many other models that have been used to describe
recall performance in PAL, such as various flavours of ACT-R mod-
els [1, 34], the predictive performance equation [45], various power
models [31] etc. All these models are valid alternative candidates for
a model-based approach (subsection 6.1 illustrates how the method
generalizes to an ACT-R model), but we chose EF primarily because,
having only two parameters, it is possible to illustrate uncertainties
with two-dimensional confidence ellipses, contrary to models with
more parameters.

2.3 Using a human memory model to model the
interaction between a user and a device

It might seem surprising to use a human memory (or any other
cognitive) model to describe the interaction between a user and
an RBIT. The memory model used here should be viewed as a
mathematical description of observed behavior rather than one of
how the human brain functions: the model simply captures the
important effects of delay and repetition when a user interacts with
an RBIT. Perhaps, the RBIT’s design makes it so that the presented
commands are more easily forgotten, and this will be captured by a
larger a; the model is thus used to estimate effect sizes of repetition
and delay.?

The well-known Fitts’ law evaluations [20, 40] work under a
similar assumption. Fitts’ law is also a model-based evaluation:
movement time is aggregated into two parameters (a and b), fol-
lowing a motor control model due to Fitts [15]. Yet, Fitts’ model has
been used countless times to evaluate devices, including some cases
of indirect comparisons [40], with the understanding that Fitts” law
in that case characterizes the entire perceptual motor loop, and
that a and b measure the size of the effect of index of difficulty on
movement time [20].
2Models used for evaluation (i.e., estimation of effect sizes) do not necessarily have to
score high on prediction (i.e., prevision of outcomes) to be useful, but instead must

prove to have good identifiability of parameters [39]. Hence, simple models with few
parameters are generally preferable.
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3 MODEL-BASED EVALUATION AND
MOTIVATIONS

A model-based evaluation assumes that observed data can be de-
scribed by a parametric model, and its “true” parameters. These
parameters can be inferred from the observed data, and serve as
the basis to summarize and compare performance — in our case
that of RBITs. The advantage of performing the comparison in the
parameter space is that the “true” parameter values are independent
of the schedules. In this section, we provide two simulated RBIT
comparisons, that illustrate weaknesses of comparisons based on
recall rates and advantages of the model-based evaluation. The
implementation and validation of the model-based evaluation is
delayed to the next section.

3.1 How model-based Evaluations Facilitate
Indirect Comparisons

Scenario. We simulate two user studies: Simulated Experiment
1, comparing RBIT A(1) with RBIT C(1) and Simulated Experiment
2 comparing RBIT B(2) with the same RBIT C(2). The two study
protocols are identical and consist of a two-day experiment with
the same number of learning and testing blocks as in [17]. They
differ only in the pauses in the schedule between blocks, as well
as trial durations. The exact simulation parameters are detailed in
Appendix B. The simulated recall rates for both experiments are
displayed in the left and middle panels of Figure 1.

It is visually clear that in Experiment 1, A(1) outperforms C(1)
and that in Experiment 2, B(2) outperforms C(2) — computations of
statistical significance are not needed. However it is less clear

(1) What the relative performance (recall-wise) of A(1) and B(2)
is. This illustrates that indirect comparisons may be difficult
to make. Indirect comparisons are important because they
are the basis for meta-analyses (quantitative or not), which
allows researchers to reliably aggregate existing research
outcomes into a consistent whole.

(2) How close the evaluations C(1) and C(2) actually are recall-
wise. This is an important question for determining the in-
ternal validity of an experiment; in particular, C might be
a baseline in which case one would want to judge whether
that baseline was reasonably implemented.

Solution provided by the model-based approach: In the model-
based approach, the comparison between C(1), C(2), A(1) and B(2)
is made in the parameter space of the EF model, see the right panel
of Figure 1, where the estimated parameter values and associated
95% confidence ellipses (CE) are shown. It is clear that:

(1) A(1) is statistically significantly different (ssd, p < 0.05) from
B(2), C(1) and C(2), since the CEs do not overlap;

(2) B(2) is ssd from C(1) and C(2); since the CEs do not overlap

(3) C(1) is not ssd from C(2); since the CEs have major overlap.

3There is little incentive for an author to come up with a strong baseline — quite the
contrary, actually. For example, the parameters of a baseline could not be finetuned
well enough. [12] provides a discussion about weak baselines in a different field but
which remains relevant here. Thus, having the ability to evaluate the performance of
the same baseline in two different studies is important.
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(4) Further, we can rank the RBITs, as A ouperforms B which
outperforms C, given that they have similar values of esti-
mated ﬁ but that estimated @4 ~ 10718 < g ~ 10717 <
ac =~ 10716,

(5) We can quantify by how much A outperforms B and C. With
the EF model, for any k and A, the probability of recall
for RBIT A is ps = exp(-da(1 — f)*A;) and for RBIT B

XA

pB = exp(—ap(1 - ﬁ)kAt), which implies p4 = pr (this
assumes equal values of ﬁ) With a log difference of 0.1 as in
our experiment, this gives p4 = pé0701
if pg = 0.5, then py = 0.5%8 ~ 0.57, if evaluated on the same
schedule, on average. Note that RBITs A and B could also be
compared through predictive simulations based on &4 and
as.

~ p%'g; For example

3.2 How Model-based Evaluations Safeguards
from Different Execution Times

In this scenario, we pretend a single user study compared RBIT A
with RBIT B, which, unbeknownst to the researcher, are strictly
identical when it comes to recall i.e,, data is generated by the EF
model with the same parameters for both RBITs. While the studies
share exactly the same protocol, the execution time for each RBIT
differ: users operate B faster than A. This is quite a common issue
with RBITs, especially in studies that compare a baseline that is easy
to operate, with a more advanced technique which might need some
adjusting before reaching efficient execution times. For example,
Appert and Zhai [2], and Fruchard et al. [17] report differences in
execution time of about 20% in their compared RBITs.

The simulated recall rates for this experiment are displayed in
the left panel of Figure 2. We see that in the three recall blocks, the
conditions A and B are ssd (respectively p < 1e™%, p < 1e™> and
p < 3e73), and the effect size is sizeable (respectively an absolute
difference of about 20, 10 and 5%). Here, the experimenter would
likely consider that B outperforms A recall-wise.

Solution provided by the model-based approach: In the model-
based approach, the comparison between A and B is again made in
the parameter space of the model considered for the evaluation, see
the right panel of Figure 2, where the estimated parameter values
and associated 95% confidence ellipses are given. The considerable
overlap of both confidence ellipses tells us that the model-based
approach finds no significant difference, and estimates a very small
effect size, in line with the scenario. The mechanism at cause here
is that different execution times will lead to different delays in be-
tween repeated items. Yet, delay is a very important predictor for
recall probability, and perhaps unexpectedly, it can lead to great dif-
ferences in block recall rates as these delays accumulate, especially
in early blocks. We coin this effect a distortion, since the recall-based
comparison is distorted due to differences in the execution times of
the RBITs. A point could be made that execution time is inherent
to a technique. However, usually HCI studies on RBITs indepen-
dently assess execution time, so it feels preferable to separate the
two effects of recall and execution time, especially considering that
often the execution time for new techniques are transiently higher
than for well practiced baselines [48].
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Figure 1: The difficulty of making indirect comparisons when working with recall rates for studies with different schedules
disappears when working with the model-based evaluation. Left panel: A simulated experiment comparing two RBITs A and C.
A visibly outperforms C. Middle panel: A second simulated experiment comparing two RBITs B and C. B visibly outperforms C,
yet we can’t say whether A outperforms B and whether C in both experiments have the same performance: indirect comparisons
are difficult to conduct. Right panel: ML estimates for A, B, and C in both experiments. We see that A outperforms B which
outperforms C. C for both experiments have the same performance. Indirect comparisons are much simpler. Parameters of the

simulation are detailed subsection B.1.
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Figure 2: The distortion that results from different execution
times in the evaluation using recall rates does not occur in
the model-based evaluation. Left: block recall rates. The two
RBITs A and B have different recall rates; that difference is
statistically significant. Right: The ML estimates for the same
two RBITs. The ML confidence ellipses have a big overlap,
indicating, that in reality, there is no difference between
the two RBITs. Parameters of the simulation are detailed
subsection B.2.

4 HOW TO ESTIMATE RBIT PARAMETERS:
THEORY, IMPLEMENTATION, VALIDATION

We have just illustrated how model-based evaluations in theory
facilitate meaningful direct and indirect comparisons. However, the
reliability of these comparisons in the parameter space depends
in practice on how well one can estimate the parameters of the
EF model and their associated uncertainty. We now describe the
method of the maximum likelihood (ML) that we used for estimation
of EF’s parameters, as well as our implementation and validation
of it.

4.1 Parameter Estimation from Recall
Sequences using the Method of Maximum
Likelihood (ML)

The method of Maximum Likelihood (ML) is a classical tool, whose
aim is to determine the model’s parameter values that make the ob-
served outcome the most likely.4 More formally, let w1, wy, . .., wn
be a sequence of observed recalls for a given command and RBIT.
Then the probability of that sequence, given the model M, its pa-
rameters 0 = (a, f§), and the history h; of pair presentation times
and participant responses up to index (i — 1) is called the likelihood
of the sequence and is given by 1(0) = []; p(wi|M, 6, h;). The ML
estimate of 6 is the parameter 6 that maximizes the likelihood of
the recall data: § = arg maxy [[; p(wilM, 6, h;). The method of ML
thus boils down to expressing the (log)’likelihood of the recall se-
quence and maximizing it, e.g., using an off-the-shelf numerical
optimization algorithm.

4.2 Quantifying the uncertainty of the ML
estimate

The method of ML is leveraged to produce a point estimate, for
example = (a, ﬁ) = (0.01,0.4). However, without an associated
uncertainty, meaningful comparisons are hard to make. Fortunately,
ML also provides the appropriate theory to express the uncertainty
of that point estimate. Indeed, under mild conditions of regularity of
the likelihood function, the ML estimator is asymptotically (for large
enough sample size) normal i.e., the estimated values are normally
distributed (N) centered on the true value 6 with covariance matrix

“We chose ML because of its asymptotic properties (unbiased, consistent, normal)
and general applicability. It is the "best" estimator in the sense that it asymptotically
reaches the Cramer-Rao bound: for a large sample size, there exists no other frequentist
estimation method that is more precise i.e., has tighter confidence intervals. For a basic
introduction, we direct the reader to a tutorial on ML for psychological sciences [32].
51t is often easier to work with the log-likelihood which transforms the product in the
likelihood into a sum. Because log is a strictly increasing function, it is equivalent to
maximize the likelihood or its logarithm.
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The inverse of the covariance matrix J° (é) is called the observed
information, and it is defined as minus the Hessian (VV7T) of the
likelihood, evaluated at 0:

J(0) = -vV'1(0),_s. 3)

Closed form asymptotic expressions for confidence intervals
(CI) and ellipses (CE) can be derived from the normal distribution.
For example, a (1 — n)% CI for 6;, the ith component of 0, is given
by [0; + @ 1(1 - /2)4/ (T (0)~1;;)], where ®(x) is the standard
normal distribution’s cumulative density function.® This example
CI shows how to interpret observed information: the “larger” it is,
the more narrow the ClIs and thus the more “information” it provides
about the parameter. We will return to the observed information
in section 5 where it serves as the basis by which we evaluate
schedules.

The value of  in the EF model is typically between 1e™> and
1e~! for PAL tasks, which is better expressed on a logarithmic scale.
We applied a log-transform on « as explained in the supplementary
material, and computed Cls using the so-called delta method. As we
show subsection 4.4, this log-transform leads to a better coverage
of the computed CIs, and correspondingly in this work we report
parameters in the (log;, a, ) space.

4.3 Implementation of the ML Estimator

We numerically computed the log-likelihood function for an arbi-
trary sequence of recalls and associated history. To maximize it,
we used the L-BFGS-B algorithm as implemented by the SciPy [44]
optimize library. CIs and CEs were computed by plugging in the
observed information Equation 3 in the CI formula resulting from
the normal approximation Equation 2; the delta method was used
to compute these in the (loga, ) space. The (log) likelihood of
the model, as well as the derivations of the gradients and Hessians
needed to express the observed information, and thus computing
the CIs and CEs are provided in the supplementary materials. Cal-
culations were verified with symbolic calculus, using SymPy [29].”

4.4 How well do the estimated parameters
reflect the true value of parameters?

In HCT, and following recommendations from cognitive science [47],
the validation of estimation methods (ML included) is sometimes
known as parameter recovery [36], where the goal is to show
through a simulation study that the estimated parameters correlate
strongly with the true value of the parameters used for the sim-
ulation. These correlations are given in Figure 3, which confirms
high Pearson correlations (p) for both parameters in the ranges
of interest. However, correlation alone is a measure that is too
coarse to validate estimated parameters intended for comparisons
between RBITs 8. To evaluate the results of the ML estimates more

The general formula for confidence ellipsoids is a multivariate generalization of this
formula, see e.g. [23].

"These calculations can be inspected in the source code of the library.

8For example, let’s imagine a comparison between two RBITs, with estimates [31 =0.8
and fB, = 0.85. Now, compare the assertion “for sample size N = 500, the computed
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finely, we also assessed its bias and standard deviation, and cov-
erage of the CIs, for the pair of true values (¢ = 0.01, § = 0.4) for
increasing sample sizes (N). To do so, and for R = 1000 iterations,
we simulated recall data with an EF memory model, estimated the
parameters, after which we computed the aforementioned statistics.
Because of the memory model, increasing the sample size is not
as straightforward as it seems: if one naively selects a schedule of
size N, most likely the recalls will only be False at the start and
become all True after some time and both will bring no information,
and hence will almost not increase the precision of the estimates
as discussed before. Hence, for each sample size N and for each
simulation, we randomly drew N pairs (k, A;) from a uniform dis-
tribution that were fed to the EF model. This schedule only makes
sense for simulations, see section 5.

-1 o logoa
0=0.997

e 5 ) gos
g ” g
= 4 = 0.6
O -3 Q
© o © 0.4
= £
B 4 k7l
w g” W 0.2
v 4
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Ground Truth value Ground Truth value

Figure 3: Pearson correlation (p) between true and estimated
values for 100x100 pairs of fully crossed and uniformly
spaced values for log;, @ € [-5,—-1] and f € [.05,.95]. Left:
log;, a, Right: f. These parameters were estimated for a fixed,
reasonable schedule. The schedule becomes less suited for
values of « away from its average, as the estimation becomes
less precise. Note that the correlation was tested on ground
truth values which include “extreme” model values e.g., very
low values of « paired with high values of § that lead to very
high recall probabilities, and conversely, high values of «
with low values of f that lead to very low recall probabilities.

Bias and standard deviation. To estimate bias (mean error to
the true value) and standard deviation (spread around the mean
estimated value) of the ML estimates, we computed the average
difference to the true value as well as the standard deviation of the
estimated parameters. Figure 4 shows that the bias and standard
deviation decrease steadily in the left and middle panels. This is
expected, since the ML estimate is asymptotically unbiased and
consistent. The quasi linear decrease of the bias is due to the asymp-
totic bias b(0) of the ML estimate being proportional to 1/n as a first
order approximation [13], and thus log b(6) is approximately pro-
portional to —log(n). These results ensure that our implemented
ML method converges to the true values; Additionally they can be

estimates correlate with the true values with p = 0.95” with the other assertion “for
sample size N = 500, for a truth value of f = 0.8, the estimator has a bias of 0.01,
and the 95% confidence interval, which is known to have adequate coverage for this
parameter is [ — 0.02, f + 0.02]”. In the latter we can conclude that the two RBITs
are significantly different (at the 0.05 level), whereas in the former we can say little
about the comparison.
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exploited to determine the sample size needed to get a certain relia-
bility on the estimates (which achieves the same goal as a power
analysis).

Coverage of the Confidence Intervals. The quality of CIs and CEs is
crucial to assess if observed differences between RBITs in parameter
space are meaningful; for example CIs that are too narrow may
mean standard errors are underestimated which in turns result in
inflated type I errors. We computed CIs directly from the normal
approximation Equation 2 and validated them by estimating their
coverage. The coverage is the probability that the CI will include
the true value of the parameter of interest, thus theoretically the
coverage of a 95% CI is 0.95. The CIs depend on the Hessian of
the likelihood via the observed information Equation 3, which we
computed in three different ways:

(1) the theoretical Hessian as derived in the supplementary ma-
terials (Coverage H);

(2) the Hessian that is numerically evaluated with the BFGS
algorithm®, hereafter called Coverage BFGS;

(3) the log-a Hessian, as described in subsection 4.2 and the
supplementary materials (Coverage log-H).

We found that somewhat unexpectedly, the coverage of the CI
with numerically computed Hessian (Coverage-BFGS) is not good,
and more importantly, does not seem to improve with increasing
N. From a practical perspective, this highlights benefits of using
analytic formulas for the Hessian, which perform much better, as
both analytical CIs end up very close to the nominal coverage
of 95%. The CI computed from the log-transformed Hessian also
appears to outperform the regular one (coverage H), especially for
small sample size. We suspect this is because the a parameter spans
several orders of magnitude in linear scale. These results explains
why we evaluate RBITs in the (log &, §) space.'”

To summarize, this simulation study validates our implemen-
tation of the ML method applied to the EF model by focusing on
several metrics and observing how they improve with sample size
(N). It also highlights the benefits of using an analytically computed
Hessian, and confirms the asymptotically normal assumption leads
to reasonable CIs, even for sample sizes as small as N = 100.

4.5 Case Study: Re-analyzing data from [17]

We now illustrate how the proposed method can be applied to a
realistic dataset; We used data from the experiment by Fruchard et
al. [17], which compares two RBITs: Marking Menu and BodyLoci.
The study summary and some operational details are delayed to
Appendix A; in short, the difficulties are in recreating the timing
information and repetitions needed to apply the EF model which
were nor properly recorded. Then, based on the repetition, delay
and recall information reconstructed from [17], we fitted the EF
model for each participant. The result is given in the two top panels
of Figure 5. We also aggregated this data in two ways to get a global

9The Hessian can be evaluated by finite difference equations, but it is also numerically
evaluated by so-called Newton algorithms such as BFGS, which can be used in opti-
mizing the likelihood. For example, the ML module of statsmodels [38] uses BFGS to
simultaneously optimize the likelihood and estimate the inverse of the Hessian.

19T addition, the CIs computed from the Hessian directly will sometimes include
negative values for @, which by definition should be impossible. This problem does
not occur with the log transformed Hessian, which is another reason for using it.
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evaluation of the two RBITs, displayed in the two bottom panels of
Figure 5:

(1) We computed a smooth probability distribution on the param-
eter space via a kernel density estimation (KDE) computed
on the parameters of all participants for each technique. This
is represented by the blue gradient in the two bottom panels
of Figure 5.

(2) We computed the parameter estimates of the two techniques
by aggregating all participant data as if they were from one
participant only, which represents the parameters of an “av-
erage memory model” of the population and RBIT. The as-
sociated CEs are displayed on top of the KDE in the two
bottom panels of Figure 5, and a direct comparisons between
the two CEs is available in Figure 16.

The results are in line with the findings in the original study, and
find no differences between the two techniques (see Figure 16). This
suggests that the significant difference obtained for the first recall
block in the original study [17] is a result of the distortion due to the
different execution times as explained in subsection 3.2. The analy-
sis also highlights the very high variability between participants,
even though these participants were chosen from a homogeneous
pool.

5 MODEL-BASED COMPARISON OF
SCHEDULE DESIGNS

Not all participant responses are equally “informative” in a collo-
quial sense: for example once an association is well learned, par-
ticipants will systematically recall the right command. Conversely,
the first participant responses may all be incorrect before memory
is sufficiently formed. The schedule thus plays an important role
in the identification of the model’s parameters, and choosing an
adapted schedule will result in shorter experiments and/or more
powerful ones (in the sense of reducing type II errors). However,
there are many constraints when it comes to building a schedule:
selecting the number of pairs to be learned, determining how many
times pairs are repeated per block and whether their distribution
should be uniform or Zipfian [27? ], what the durations of pauses
are between blocks, on how many days to conduct the experiment
etc.

Model-based evaluation can be used to assist the experimenter in
the design of the schedule. More precisely, in this section we show
that we can analytically compare two schedules in their capacity to
discriminate the recall performance of two RBITs before conducting
the empirical study. Ultimately, by comparing possible schedules
of interest, or via constrained optimization [6], a researcher can
identify the schedule that best discriminates two RBITs conditional
on their constraints.

5.1 Measuring the informativeness of a
schedule

Consider two potential schedules on which to compare the RBITs.

We say one schedule is better than the other if the estimated CEs are

more distinct (narrower and more distant). Since CEs are directly
constructed from the observed information (see subsection 4.2), we
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(logio @, B) plots, Marking Menu (MM) versus BodyLoci (BL), Fruchard et. al. 2018

MM -- Per participant

BL -- Per participant

1.0 1.0
0.9
0.8
0.7
0.6
0.5

-1 98 g -4 -3 -2 -1

1.0 MM -- All participants 1.0 BL -- All participants

0.9 0.9
0.8 @ 0.8
x 0.7 0.7
0.6 0.6
0.5 0.5

s g -4 -3 -2 - & 3 -4 -3 -2 -1

logioa logioa

Figure 5: BodyLoci versus marking menus in the parameter
space of the EF model. The top panels give the estimated
parameters with their associated confidence ellipses for each
participant for marking menus (left) and BodyLoci (right).
Below: a kernel density estimation (blue gradients) computed
on the parameters of all participants. Superimposed is the
estimate of the parameters of the EF model when all partici-
pants are assumed to have the same parameters.

suggest using the latter to rank schedules: larger observed informa-
tion means narrower CEs and thus, a better schedule.

Observed information (see Equation 3) quantifies the information
provided by one recall outcome about the unknown parameters of

the model [11]!!. To get a measure that characterizes the schedule,
we need to average information from multiple outcomes obtained
with the same schedule. Thus, to evaluate a given schedule with
N trials, we simulated R recall experiments with this schedule.
The observed information associated with the nth trial and the rth
simulation is J, . We then define the following three aggregate
information metrics (see Figure 6 for an illustration):

e the sequence observed information ., which is the ob-
served information computed for the sequence of recalls
until n at repetition r. This information is just the sum of
the individual observed informations Jp, , = Z;’zl Jir for
each trial i and is the one used to construct the confidence
intervals in section 4.

e the Fisher!? information < J >, defined as the average
observed information for a particular trial n: < J >p,=
% 2521 Jn,r- This information tells us how much information
one particular trial of the schedule provides on average i.e.,
identifies which trials are informative and which aren’t.

o the sequence Fisher information < J >., the average ob-
served information for the sequence until the n-th trial. It
equals the sum of the n Fisher information, or, equivalently,
the average sequence observed information over all repe-
titions: < J >.;p= X1, < J >i= 1%25:1 Jon,r- This infor-
mation estimates how information is accumulated by the
schedule; it is thus the one we suggest for ranking schedules.

¥or an intuition as to why this may be true: One can approximate the likelihood
function via Taylor’s theorem around the maximum: up to the second order we have
10 +h) = 1(6) + VI(O)h + 1/2hTVVTI(O)h + o(||h||?). By definition of 6 as
value that maximizes I(6), the gradient term vanishes VI(0)h =~ 0, which shows the
likelihood to be a parabola whose flatness is given by the Hessian of the likelihood,
and the flatter the likelihood, the lesser the certainty we may have about that estimate.
We refer the reader to textbooks on statistics for more details.

2Technically, Fisher information [14] is the expected value of the observed information,
see [28] for a tutorial on Fisher information for the psychological sciences. Both
Fisher and observed information are used interchangeably in the statistical literature
depending on which one is the easiest to compute [7], with conflicting results about
which type of information actually leads to the most precise estimates [7, 11]. Because
we compute averages of observed information, we call these Fisher information, even
though the correspondence is only valid asymptotically.
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Figure 6: How we estimate the informativeness of schedules.
We evaluate a schedule with N trials R times. For each trial
n in schedule r, we observe the outcome w;,, and compute
the observed information 7, . By averaging over all replica-
tions, we obtain < J >, the Fisher information for trial n.
The observed information for the n first trials par a particu-
lar repetition r is the sequence observed information 7, ,
and its average over all replications is the sequence Fisher
information < J >.,;

5.2 A Measure of information: 7

The three information measures defined just before are matrices
i.e., a multi-dimensional object, which makes them inconvenient
to rank schedules. To get a scalar measure of the information of
a sample, we need two things: 1) Derive a scalar measure from a
matrix, and 2) make sure that this measure is positive. As scalar
measure of information 7, we computed the square root of the
determinant of I (é) where J (é) is any one of the three metrics

defined before
= /det(J (6)). (4)

The square root of the determinant of a covariance matrix is called
a generalized variance, and was previously used and motivated in
HCI in [20, Section 4.3]. The generalized variance of the observed
information matrix has also been used before as an objective in
optimal experiment designs [10].

Sometimes, the inverse of the observed information matrix is not
definite semi-positive'®. To solve that problem, we use an algorithm
by Higham [22] that outputs J (6), the closest positive semi-definite
matrix to J (é), and we use this information matrix rather than
the original one in 7. In the end, we get

= \/det(F (8)). )

We illustrate the Fisher information (blue), its binned average
together with its 95% bootstrap computed CI (red) and the sequence

13 As the observed information matrix is the inverse of a covariance matrix, it should by
definition be positive semi definite — the multiple dimensions equivalent of saying that
the variance should be positive. However, for low sample sizes, observed information
can be unreliable and actually lead to what essentially are negative variance estimates.
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Fisher information (orange) for a schedule where k and A; are uni-
formly sampled, which we call a uniform iid schedule, see Figure 7.
This schedule can not be performed with real participants (it as-
sumes the memory can be “loaded” with an arbitrary history), but
provides for an interesting upper bound. Indeed, because recalls are
identically distributed and independent, all trials should in theory
be equally informative, which is indeed the case in Figure 7. As a
result, the sequence Fisher information is linearly increasing.'*
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Figure 7: Fisher information (blue) computed over all 1000
repetitions, for an iid schedule for each of the N = 150 tri-
als. Its binned average and 95% bootstrap computed CI are
displayed in red bars. The sequence Fisher information is
displayed in orange. Simulation parameters detailed subsec-
tion B.3.

5.3 What makes a schedule informative?

The uniform iid schedule used above, while important to illustrate
the metrics, is impossible to enforce in practice because the exper-
imenter cannot impose an arbitrary sequence of k’s (repetitions
in the EF model): the number of repetitions has to be incremented
by one after each presentation of the corresponding command. We
now explore a few realistic schedules, to get more insight into the
informativeness of schedules.

Linear Schedule. A linear schedule is one where the delays be-
tween trials are equal. The information for a linear schedule is
displayed in Figure 8. Information is null at the start, increases
between N = 10 and N = 25, and then levels off. Without surprise,
before N = 10, recall is null, and after N = 25, recall is perfect.

A constant recall probability Schedule. The sequence Fisher in-
formation in the linear schedule (and our initial intuition) suggests
that a schedule where the recall probability stays away from 0 and
1 will be more informative than otherwise. Such a schedule is easy
to build: we simply have to increase the delay with the repetition
number. For example, we can ensure a constant recall probability

_—logp
2G-p)F We evaluated this idea

This information graph plotted together with the recall events and the bias and
standard deviation of the estimator can be found in the supplementary materials.
This is the case for all such information plots. Together, they show bias and standard
deviation get reduced with the sequence Fisher information.

p by adjusting the delay as A; =
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Figure 8: Top panel: Recall events and estimated recall proba-
bilities as the schedule progresses. Bottom panel: Associated
Fisher and sequence Fisher informations. Simulation param-
eters are detailed subsection B.3.

on the uniform iid schedule for several constant recall probabilities
and for « = 1072 and & = 107>, Figure 9 displays the maximum
of the sequence Fisher information; surprisingly to us, it is more
informative to keep the recall rate relatively low e.g., about p = 0.2
for = 1e~2 and p =0.1fora = 1e73. Indeed, recall rates are
typically much higher in RBIT studies.

A typical schedule. We evaluated a typical schedule from the
RBIT literature, very similar to the one used in [17] see the top
panel Figure 10. The schedule was executed for multiple commands,
where each command was presented ten times in total over two
days, with various pauses between blocks. This schedule has the
same linear increase in sequence Fisher information, as did the
iid schedule, which shows it is rather effective at accumulating
information. The bottom panel of Figure 10 shows the evaluation
of an equivalent schedule, with the same number of presentations
but where the time between trials is computed to maintain a recall
probability p = 0.2. We observe the same linear trend for sequence
Fisher information, but on average each trial is about three times
more informative. As a result, the typical schedule evaluated here,
which spanned two days, is three times less informative than the
p = 0.2 adjusted schedule, which spans less than 3 hours. More
details about this simulation are given in Appendix B.
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Figure 9: Sequence Fisher information plotted against the ex-
pected recall probability for an iid schedule. Simulated with
B = .4, for @ = 1e2 (blue) and « = 1e~3 (orange). Simulation
parameters detailed subsection B.3.
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Figure 10: Sample and sequence Fisher information from a
typical two-day schedule from the RBIT literature (top panel)
with pauses in between blocks, and from a schedule where
the duration between blocks is determined to maintain an
expected recall probability of p = 0.2 (bottom panel). Notice
the difference in y-axes, the schedule in the right panel is
three times more informative. Simulation parameters for
both panels detailed subsection B.5.



CHI ’24, May 11-16, 2024, Honolulu, HI, USA

5.4 Information is independent of the schedule
type

We computed information for various schedules; one could wonder
whether an information of X for one schedule type is equivalent to
X for another. In theory, the answer is yes: information as defined
in Equation 5 maps directly to the size of CIs and CEs. We verified
this by plotting the standard deviation of the estimates against
the information of the schedule for all schedules that we used in
this work (including results not communicated in this paper), see
Figure 11. As expected, for a given assumed true value of 0, the
more information increases, the better its estimate.
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Figure 11: Standard deviation of a (c(«), top panel) and S
(o(p), bottom panel) as a function of the sequence Fisher
information. The data is the aggregate of all the simulations
conducted in this work.

These results support that information as defined in this section
is a good objective function to maximize or compare schedules.

5.5 Does the typical method based on
computing recall rates also benefit from
more informative schedules?

Finally, one may also wonder whether a better schedule for the
model-based estimation translates to a better schedule for the typ-
ical method based on computing recall rates and assessing their
significance with p-values. To test this, we simulated a comparative
experiment with two RBITS: one with (@ = 10719, p = .4), the
other with (@ = 10721, § = .4). From Figure 9, the most informative
condition for (& = 1072, § = .4) is around a constant probability of
recall of p = 0.2.

We thus created schedules that maintain a constant recall prob-
ability in increments of 0.1, to see whether the p = 0.2 condition
would again lead to better discriminability between the two RBITs.
For each of these schedules, we simulated an experiment, and com-
puted recall rates. We then computed the significance of the differ-
ence in recall rates between the two RBITs, which gave us several
p-values, one per block. To aggregate these p-values into one, we
used two multiple comparisons methods, the Fisher and Stouffer
methods [9]'°. This was repeated 100 times. The average of the

5These two methods are suited to combine independent p-values. However, since the
same RBITs have been evaluated in each block by the same participants, the p-values
are dependent. More sophisticated methods exist for combining multiple dependent
p-values, see [9] for more details, but are out of the scope of this paper. So, while the
exact p-values might be incorrect, we assume that the relative difference between
them is meaningful.
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combined p-values over all repetitions, plotted against the constant
recall probability used to design the schedules are displayed in
Figure 12. In line with Figure 9, the region of recall probability
around 0.2 that maximized the informativeness of the schedule also
maximizes the discriminability of the two RBITs when measured in
terms of combined p-values, be it with Fisher or Stouffer p-values.
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Figure 12: Combined p-values for the difference in mean
recalls for schedules that aim for a given recall probability,
for two methods of combining p-values: Fisher’s method (in
blue) and Stouffer’s method (in orange). Simulation parame-
ters detailed subsection B.6.

In summary, an informative schedule is thus one where the delay
is adjusted with repetition number, keeping the recall probability
low. While it has been recognized by some experimenters that
integrating longer delays as the experiment progresses is beneficial
e.g., having experiments extend more than one day [17], we provide
here a quantitative relationship that allows more precise design
of schedules. Additionally, and in contrast with existing designs,
computing these delays to maintain a rather low probability of
recall for participants is recommended. It is important to note that
schedules are ranked for a given memory model and parameter
values. This implies that an estimate of these values are known
prior to the experiment, which can be achieved by means of a pilot
study, or by using existing data from the literature. Finally, because
the goal is usually to compare two different RBITs, one has to decide
which value for @ and f to consider (should the parameters of the
first or the second RBIT be used?). Here, a practical advice is to
consider the average of parameter values.!®

6 DISCUSSION

In this work, we introduced model-based evaluations for experiment
design and comparisons of RBITs based on fitting an exponential
forgetting (EF) model on recall data using the method of ML. We
validated several aspects of our approach. We now discuss how the
approach can be generalized, as well as some of its implications for
HCIL

161f the two RBITs are similar in performance then the schedule will be close to optimal.
In the case when two RBITs have very different performances, it remains a question
what the best schedule might be, a reasonable strategy would be to compare the
two schedules designed for the two different pairs of parameters and then decide —
however, if differences are remarkable, any reasonable schedule will likely pick up the
differences anyway.
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6.1 Considering alternative models

As with any model-based evaluation, the result of our work depends
on how good of a description the EF model is for how people learn
an RBIT. That being said, the general method as well as the measures
of information remain valid for any other model. For example, we
validated the ML approach of section 4 with a 3-parameter ACT-R
model [34]. The model reads

p= (1+exp(%))_l with m = log (IZ:;Ati_d) (6)

where the activation, m , is a power function of the times At; since
the command i was presented, and the exponent d stands for de-
lay, and s and 7 are parameters that add extra flexibility to the
model. In comparison with the EF model where recall is just a func-
tion of when the last command was presented, the ACT-R model
accounts for all past command presentations via m. Concretely,
ACT-R predicts different behavior when items are repeated e.g., as
in the training schedule used in [37]. While the ACT-R model is a
bit more complex, it is still possible to derive the needed Hessians
analytically (the full derivations can be found in the supplementary
materials). The validation of the ML method for ACT-R, as well as
the coverage of the CIs is given Figure 13, with similar conclusions
to the EF model.

Yet other models can be accounted for. For example, to isolate
the impact of a given experimental factor on memory and RBIT
evaluation, one may look to modify the model by including some
mechanism that accounts for this factor. That factor could be e.g.,
stimulus exposure duration, or a grouping factor to distinguish
between several groups. But what if as a result the model becomes
rather complex? As long as it can be described by an explicit equa-
tion, one can use symbolic calculus'’ to derive an expression for
Hessians if they become too difficult to compute by hand. If that too
is impossible, it remains possible to compute numerical estimates
of the Hessian, such as the one used to compute the BFGS coverage
in subsection 4.4, although their coverage may have to be carefully
assessed. Finally, for simulator-like models, where the likelihood
is not always possible to express, one can still use likelihood-free
methods to infer model parameters (e.g., with ABC, see next subsec-
tion). Note that the comparisons and design of schedules could be
performed for multiple models, potentially providing more robust
conclusions.

6.2 What to do when full recall information is
not available?

The proposed method for model-based evaluations requires infor-
mation that is not always easy to get from existing datasets. While
the number of repetitions (k) is usually implicit from the description
of the study design, this is not the case for the timing information.
Timestamps needed to compute delays are easy to get in theory but
are rarely reported in traditional RBITs evaluations, as a limited
corpus of data that we collected from colleagues showed. In the
example of section 3, we were forced into reconstructing the timing
data. One immediate recommendation for authors is thus to gather
and publish precise timing information together with recall data.

71n fact, the calculations of the Hessians in our library pyrbit were verified with
symbolic calculus for both models.
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With more missing information (like recall data), it remains
possible to infer the memory model’s parameters based only on the
recall rates e.g., by leveraging Approximate Bayesian Computation
(ABC) [42], a method previously introduced in HCI [24]. ABC is
an inference method which uses a simulator to generate outcomes
which are then aggregated to summary statistics; these are then
compared to a reference set of summary statistics (i.e., the ones
reported in a paper). The estimated parameters are the ones which
lead to the smallest discrepancy between summary and reference
statistics.

To illustrate ABC, we used PyMC4’s [46] Sequential Monte Carlo
version of ABC (ABC-SMC), and implemented a custom simulator.
The simulator uses the EF memory model with the schedule and
estimated parameters of BodyLoci [17] (@ = 1072 and f = .77, see
subsection 4.5 and Figure 16) to evaluate recall rates from an entire
experiment with multiple items and participants. The resulting
forest plot for the estimation of parameters with ABC is displayed
in Figure 14. One sees that while the posterior means are close
to the true parameters, the 95% Highest Density Interval (HDI)
is very wide. This is unsurprising considering we have a lot less
information available than with the full recalls. We also used weakly
informative priors (uniform distribution on [—6, —.5] for log;, & and
on [0.01,0.99] for ), and did not fine-tune the procedure extensively,
which may explain some of the width of the HDI.

6.3 The distortion due to execution time

In subsection 3.2, we showed that differences in execution time
create differences in the evaluation based on recall rates, but not in
the model-based evaluation. It is worth discussing what the “ideal”
behavior of any evaluation is in that case: should it be sensitive
to different execution times or not? We do not provide a definite
answer to that question, as we believe it depends on the exact
context and goal of the experiment. We do give several arguments
to consider before deciding whether the execution time introduces
an unwarranted distortion or not:

e Many studies intend to assess execution time separately from
recall rates, as they will often display separate barplots for
execution time and recall rates. Including execution time in
recall rates goes against that intention.

o The execution time is related to the experimental protocol, in
particular whether the intertrial time is controlled or not. It is
also related to the particular implementation of the RBIT. For
example in marking menus, the delay that is chosen to make
the novice mode appear is arbitrary and may vary between
implementations. Do we want to take this into account into
the recall rates?

e Once the parameters of recall have been properly estimated,
one can perform various simulations with various execution
times to investigate their effect. Having an estimation that
is free from execution time thus offers more flexibility from
the perspective of modeling/simulation.

e Execution time is intimately linked with skill — usually
the more skilled the participant the lower the execution
time. This introduces a bias towards techniques that are well
known / where skills transfer fast. This bias may be precisely
what the experimenter intends to measure, but may also be
unwanted.



CHI ’24, May 11-16, 2024, Honolulu, HI, USA

parameter
s Jd
107 s
T
_ % 10-1
L 5!
B 10-2 - 2
10-3 1072
10.0 100.0 1000.0 10.0
N

Julien Gori, Bruno Fruchard, and Gilles Bailly

parameter
. Jd
s
T

parameter
d

Coverage
N\

0.4 // i
/ variable
/ == Coverage H
0.2 4 === Coverage BFGS
/ —— Nominal coverage

100.0 1000.0 10t 102 10°
N N

Figure 13: ML estimation for increasing sample size for ACT-R. Left and middle panels: bias and standard deviation of the
estimates in log scale. Right panel: coverage of the CIs constructed with the analytical Hessian (Coverage H) and the numerical

Hessian (Coverage BFGS).

95.0% HDI
[0g10alpha  m——————
b ==
-4 -3 -2 -1 0 1

Parameter value

Figure 14: Forest plot for estimation of log;, « and § (b) using
ABC.

Researchers should carefully consider these arguments before
deciding whether or not to adopt a model-based evaluation and/or
control for potential differences in intertrial time.

6.4 On model-based and model-free evaluations

While this paper argues for a model-based evaluation, we do not
reject model-free evaluations like those based on recall rates: both
methods are complementary, just like parametric and non-parametric
statistical tests are [3]. In particular, model-free evaluations, which
operate by computing summary statistics on observed data do not
rely on the assumption that a particular model well describes recall
data. However, provided one can formulate an adequate model,
the model-based approach provides several benefits shown in this
paper, as well as the ability to predict, and thus to plan e.g., if the
model-based evaluation is part of an intelligent agent [33]. Just
thinking about memory models might already be helpful to design
experiments and analyze their outcomes, as a particular model im-
plicitly specifies which are the important factors to consider. For
example the role of delay in EF is primordial; recognizing this could
have sparked an empirical investigation on the effect of different
execution times like the one in subsection 3.2.

7 PYTHON LIBRARY: PYRBIT

To help researchers engage with this work, we release a Python li-
brary called Pyrbit that provides utilities and methods for inference

and simulation of RBITs, as well as tools to estimate the informa-
tiveness of an arbitrary schedule. It currently has about 2000 lines
of code. The library namely features ML and ABC submodules for
inference, ACT-R and EF submodules that implement the models
as well as the Hessian calculations. These two submodules also
propose custom visualisations that help the end-user assess how
well the models fit the data. Pyrbit also has submodules to help
designing experiments; an information module to evaluate the in-
formativeness of a schedule, and the design submodule that can be
used to run a power analysis.

The library is available on PyPI, Python’s package index, and
can be installed using pip install pyrbit. The library is also
documented at https://jgori-ouistiti.github.io/pyrbit/ with more
details and examples codes for the following use cases:

e Estimating and plotting the parameters of memory mod-
els (EF and ACT-R, see subsection 6.1) from a sequence of
recalls and the associated CI/CEs, using ML or ABC (see
subsection 6.2). This can be used directly to compare RBITs.

e Evaluating the informativeness of any arbitrary schedule,
measured by sequence Fisher information, together with bias
and standard deviation information of the estimator. This
can be used to rank schedules and/or select an appropriate
sample size.

e Comparisons of RBITs based on recall rates, including power
analyses for statistical tests aggregating recall rates for two
RBITs. This can be used as a complimentary analysis to rank
schedules according to the more typical design criterion
based on recall rates and/or select an appropriate sample
size.

8 FUTURE WORK

We foresee several directions for future work.

8.1 How similar is PAL to learning in the RBIT
context?

The PAL paradigm abstracts away most of the complexities of
RBITs. However, one may question how much the original problem
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has been simplified, and how much of the substance of RBITs has
been lost. There are several differences between PAL and RBITs.
In PAL, very little time is left to the participant to form recall
strategies. For example, Ebbinghaus presented new items at the
high rate of 1 pair every 0.4 seconds in his seminal study [31].
In comparison, the rate of pair presentations is much lower in
typical HCI RBIT studies and may involve different phenomenon.
For example, for marking menus [26], the training phase consists
in participants selecting a command in the menu using the novice
mode, which is both time consuming (a couple of seconds) and
sollicits motor memory. Another example is provided by Fruchard et
al. [17], who list strategies used by participants to enhance their
recall: one participant makes associations between items e.g., “the
eagle is flying above the monkey”, because the items are not entirely
nonsensical. Some RBIT studies also involve decision-making e.g.,
participants get to choose between two interaction techniques, or
the choice of the modality during the training phase and sometimes
during the recall phase, such as in [2], where the participant may
decide between keyboard and stroke shortcuts during some of the
test phases.

Without more work, it is hard to determine how much standard
memory models developed for PAL are suited to model RBITs, but
section 3, subsection 4.5 and Appendix A show that even a very
basic model such as EF provides decent explanatory power. An
important future work is to gain a better understanding of this
aspect. This includes more precise models of how users interact
with RBITs (e.g., [4]). We remain optimistic because, as shown in
Figure 10, there seems to be a lot of room for improvement in
current schedules.

8.2 Empirical validation of optimal designs

This work presented the theory of model-based evaluations applied
to the EF model, and how it could be leveraged to design schedules
to compare RBITs. Both contributions were validated through sev-
eral simulations. Model-based evaluation was applied to previously
published empirical data, however, we did not conduct an empirical
evaluation of the schedule design method. The primary reason is
that simulations enable running a multitude of experiments that
would otherwise require many different participants, in order to
reliably evaluate different schedules [30]. In particular, the ground
truth in an empirical study can only be estimated by repeating the
study several times, which is very costly. In the future, we plan to
re-run existing RBIT studies with the original and our proposed
schedules to assess the possible benefits of our proposed method.

8.3 A meta-analysis of RBITs

Based on model-based evaluations, we intend on conducting a large
scale meta-analysis of RBITs. Meta-analyses are statistical analyses
that aggregate the results of multiple scientific studies — for exam-
ple, Fisher’s method of combining independent p-values presented
in subsection 5.5 is a technique that can be used for a meta-analysis.
The model-based evaluation would allow aggregating results from
RBITs evaluated with different schedules. The use of meta-analyses
in HCI is advocated by Kay et al. [25], who considers that the “poor
state of knowledge accrual in HCI ” can be improved by conduct-
ing meta-analyses. Given that for many studies, in particular older
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ones, it may be hard to obtain the data required for the ML analy-
sis, we will likely combine ML and ABC methods. The parameters
identified in each study may be influenced by experimental fac-
tors not considered in the model, such as whether visual feedback
was provided upon selection. This difficulty, shared by the classic
recall-percentage method, could be addressed in the model-based
evaluation by using memory models that may account for these
factors as discussed in subsection 6.1.

8.4 Improving small sample behavior of the
estimator

Estimating online the parameters of a memory model used to repre-
sent a user interacting with a device is useful to design adaptive or
intelligent user interfaces [8]. For example, memory models can be
exploited in intelligent tutoring systems; see [33] for an approach
that uses the EF model and its inferred parameters to adopt the best
teaching strategy, and references therein for similar works using
different models. The main place for improvement of the proposed
inference method lies in the small sample regime; indeed ML be-
ing asymptotically optimal (it reaches the Cramer-Rao bound, see
subsection 4.2), there is little room for improvement for large sam-
ple sizes. Bayesian inference would also constitute an alternative
for the small sample regime (Bayesian inference is asymptotically
equivalent to ML). The bias of the ML estimates, and potential so-
lutions to reduce it are discussed by Firth [13], and could likely be
exploited.
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A DETAILS ON THE CASE STUDY

A.1 Study summary

Studies prior to that of Fruchard et al. [17] had shown that spatial
memory and semantic aids can help users learn and remember
gestural commands. Using the body as a support to combine both
dimensions had been proposed, but no formal evaluations had yet
been reported. Fruchard et al’s study evaluated on-body interac-
tions, with an RBIT called BodyLoci and compared it with mid-air
marking menus. For the two RBITs, command are mapped with
arbitrary locations: either a zone on the body (BodyLoci) or a loca-
tion in a marking menu. Both RBITs have a novice and an expert
mode. The study consisted in interleaved learning (L) and test (T)
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blocks, with on the first day L1/T1/L2/T2/L3/T3 and on the second
day T4/L4/T5. The study found no statistically significant benefit of
using on-body interactions in a block recall percentage evaluation
for T2/T3/T4/T5 and a significant difference for T1. The average ex-
ecution times were: 5 seconds for BodyLoci, 4 seconds for marking
menus.

We used the complete dataset of the experiment, which does not
include precise timing information; we have the duration of a trial
but not the associated timestamps, which we have to reconstruct
based on information in the paper.

A.2 Reconstructing data

To reconstruct timing information, we added a constant intertrial
time to the trial duration. In between blocks, we also added a con-
stant interblock time, except between recall blocks R3 and R4, where
we add a full day. With an intertrial time of 8 seconds, and an
interblock time of 30 seconds, we get an experiment duration of
(27 (marking menus)+31 (BodyLoci) = 58 minutes) for the first day
and (11 (marking menus) + 13 (BodyLoci) = 24 minutes), which
conforms to the paper’s description (about an hour for the first day,
30 minutes for the second day).

EF fit on BodyLoci
1.0

e Estimated recall probability
Recall events
l——g 0.6 = exponential forgetting model
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Figure 15: Binned scatterplots of recall events against the
exponent for BodyLoci (left) and marking menus (right) for

f 17]. . .
re onfgntgr%?rtlggtdr%%)%tﬁ?orgs,[ w75] follow this logic:

e during the learning phases, participants could use either
novice or expert mode, and the right location was always
revealed. This means that whether the participant recalled
correctly or not, the repetition number (k) is incremented.

o during the testing phase, if the recall is incorrect, k is not
incremented because the correct location was not exposed
systematically after an incorrect recall. If the recall is correct,
k is incremented because finding the correct location rein-
forces the memory. We can’t account for edge cases where
e.g., the participant hesitated between two locations, and
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selected the wrong one (the participant would then likely
deduce where the correct location was, which would also
refresh their memory).

e We do not use the recalls from the learning phase to fit
the memory model. Indeed, during the learning phase the
participants were free to choose the expert or novice mode;
Some participants may choose to use novice mode even
though they are capable of using the expert mode e.g., by
habit or by compliance with the idea of the novice mode in
the learning phase.

To verify the quality of the reconstructed data, as well as the fit
of the EF model to this experimental data, we propose the following
visualization. We define the exponent of the exponential forgetting
model as the term inside the exponential in Equation 1:

w=-a(l- ﬁ)kAt (exponent w € R7), 7)

which gives an exponential relationship between the probability of
recall and the exponent:

p = exp(w). ®

A binned scatterplot [41] of recall events against the exponent
should thus appear to follow an exponential curve. The plot is dis-
played on Figure 15. Overall, the match between the reconstructed
data and the EF model seems reasonable in catching the main effects
of delay and repetition, except for the recalls around the exponent
value of w = 3.

0.82
0.80
0.78
Q
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0.74 == MarkingMenu
=4= BodyLoci
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logio @

Figure 16: BodyLoci versus marking menus in the parameter
space of the EF model. Parameters adjusted from recall data
belonging to all participants and for all items. For more con-
text, see the bottom panels of Figure 5.

B SIMULATION PARAMETERS
B.1 Figure 1

Parameters similar to those from [17], see Appendix A. We used
more participants to be sure to have statistically significant differ-
ence that is obvious to the eye.

o f=.75

o ay=10"18 gp=10"17 g = 10710

o interleaved learning and test phases: L1/T1/L2/T2/L3/T3/T4/L4/T5,

command mapping always shown during test phases.
e schedules:
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B.2

— A vs C: interblock durations: [10, 10, 10, 200, 200, 100000,
200, 200] seconds (100000 seconds =~ 28 hours), intertrial
time: 5 seconds.

— B vs C: interblock durations: [0, 1000, 400, 400, 400, 86400,
1000, 400] seconds (86400 seconds = 24 hours), intertrial
time: 4 seconds.

e 15 commands
e 100 participants

Figure 2

A one day experiment with three test phases. A shorter experiment
better shows the distortion.

[ ﬁ = 5

o q=10"25

e interleaved learning and test phases: L1/T1/L2/T2/L3/T3,

B.3

B.4

B.5

B.6

command mapping always shown during test phases.
interblock durations: [10, 200, 200, 200, 200] seconds
intertrial time A: 10 seconds

intertrial time B: 5 seconds

50 commands

24 participants

Figure 4, Figure 7 and Figure 9

p=.4

a =102 (and a = 1073 for Figure 9)

k drawn uniformly in {0, 1,. .., 10}

At drawn uniformly in [0,5000] seconds

1000 repetitions

schedule length: N € {10, 100, 1000, 10000} for Figure 4, N =
150 for Figure 7, N = 250 for Figure 9.

Figure 8
=4
a=10"?

e A; = 17280 seconds (about 5 hours, for a schedule that lasted

20 days)

o schedule length: N = 100.
e one command, one participant.
e 1000 repetitions

Figure 10
° ﬂ =4
e =102
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e 100 Repetitions
e 1 items, 48 participants

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009

o interleaved learning and test phases: L1/T1/L2/T2/L3/T3/L4/T4/L5/T5,

command mapping always shown during test phases.
Time instant at which block starts. Left panel:[0, 200, 400,
600, 800, 2000, 2200, 2400, 86200, 86400]. Right panel: [97,
161, 268, 447, 745, 1242, 2070, 3450, 5749, 9582]

1000 Repetitions

Figure 12
p=a4

e ap=10"%1 qg=10"17
e Schedule optimized for & = 1072 (same parameters as the

right panel of Figure 10)
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